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Abstract: The Muon Ionization Cooling Experiment (MICE) collaboration has developed the
MICE Analysis User Software (MAUS) to simulate and analyze experimental data. It serves as
the primary codebase for the experiment, providing for offline batch simulation and reconstruction
as well as online data quality checks. The software provides both traditional particle-physics
functionalities such as track reconstruction and particle identification, and accelerator physics
functions, such as calculating transfer matrices and emittances. The code design is object orientated,
but has a top-level structure based on the Map-Reduce model. This allows for parallelization to
support live data reconstruction during data-taking operations. MAUS allows users to develop in
either Python or C++ and provides APIs for both. Various software engineering practices from
industry are also used to ensure correct and maintainable code, including style, unit and integration
tests, continuous integration and load testing, code reviews, and distributed version control. The
software framework and the simulation and reconstruction capabilities are described.
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1 Introduction

1.1 The MICE experiment

The Muon Ionization Cooling Experiment (MICE) sited at the STFC Rutherford Appleton Labo-
ratory (RAL) has delivered the first demonstration of muon ionization cooling [1] – the reduction
of the phase-space of muon beams. Muon-beam cooling is essential for future facilities based on
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muon acceleration, such as the Neutrino Factory or Muon Collider [2, 3]. The experiment was
designed to be built and operated in a staged manner. In the first stage, the muon beamline was
commissioned [4] and characterized [5]. A schematic diagram of the configuration used to study
the factors that determine the performance of an ionization-cooling channel is shown in figure 1.
The MICE experiment was operated such that muons passed through the experiment one at a time.
The experiment included instrumentation to identify particle species (the particle-identification
detectors, PID) [6–11] and to measure the phase-space coordinates of each muon. An ensemble of
muons that was representative of the muon beam was then assembled using the measured coordi-
nates. The techniques used to reconstruct the ensemble properties of the beam are described in [12]
and the first observation of the ionization-cooling of a muon beam is presented in [1].

The configuration shown in figure 1was used to study the factors that determine the performance
of an ionization-cooling channel and to observe for the first time the reduction in transverse emittance
of a muon beam.

The MICEMuon Beam line is described in detail in [4]. There are 5 different detector systems
present on the beamline: time-of-flight (TOF) scintillators [6], threshold Cherenkov (Ckov) counters
[13], scintillating-fiber trackers [14], a sampling calorimeter (KL) [8, 9], and the Electron Muon
Ranger (EMR) – a totally active scintillating calorimeter [10, 11]. The TOF, Ckov, KL and EMR
detectors are used for particle identification (PID), and the scintillating-fiber trackers are used to
measure position and momentum. The TOF detector system consists of three detector stations,
TOF0, TOF1 and TOF2, each composed of two orthogonal layers of scintillator bars. The TOF
system determines PID via the time-of-flight between the stations. Each station also provides a
low-resolution image of the beam profile. The Ckov system consists of two aerogel threshold
Cherenkov stations, CkovA and CkovB. The KL and EMR detectors, the former using scintillating
fibers embedded in lead sheets, and the latter scintillating bars, form the downstream calorimeter
system.

The tracker system consists of two scintillating-fiber detectors, one upstream of the MICE
cooling cell, the other downstream, in order to measure the change in emittance across the cooling
cell. Each detector consists of 5 stations, each station having 3 fiber planes, allowing precision
measurement of momentum and position to be made on a particle-by-particle basis.

1.2 Software requirements

The MICE software must serve both the accelerator-physics and the particle-physics needs of
the experiment. Traditional particle-physics functionality includes reconstructing particle tracks,
identifying them, and simulating the response from various detectors, while the accelerator-physics
aspect includes the calculation of transfer matrices and Twiss parameters and propagating the beam
envelopes. All of these items require a detailed description of the beamline, the geometries of the
detectors, and the magnetic fields, as well as functionality to simulate the various detectors and
reconstruct the detector outputs. MICE aims to measure the change in emittance to 1%, which
imposes requirements on the performance of the track reconstruction, particle identification and
measurements of scattering widths. In addition, the computational performance of the software
was also important in order to ensure that the software can reconstruct data with sufficient speed to
support live online monitoring of the experiment.
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Figure 1: Schematic diagram of the MICE experiment.The red rectangles represent the coils
of the spectrometer solenoids and focus-coil module. The individual coils of the spectrometer
solenoids are labelled E1, C, E2, M1 and M2. The various detectors (time-of-flight hodoscopes
(TOF0, TOF1) [6], Cherenkov counters [13], scintillating-fiber trackers [14], KLOE-Light (KL)
calorimeter [7, 8], and Electron Muon Ranger (EMR) [10, 11]) are also represented.

2 MAUS

The MICE Analysis User Software (MAUS) is the collaboration’s simulation, reconstruction, and
analysis software framework. MAUS provides a Monte Carlo (MC) simulation of the experiment,
reconstruction of tracks and identification of particles from simulations and real data, and provides
monitoring and diagnostics while running the experiment.

Installation is performed via a set of shell scripts with SCons [15] as the tool for constructing and
building the software libraries and executables. The codebase is maintained with GNUBazaar [16],
a distributed version control system, and is hosted on Launchpad [17], a website that provides
functionalities to host and maintain the software repository. MAUS has a number of dependencies
on standard packages such as Python, ROOT [18] and Geant4 [19] which are built as “third party”
external libraries during the installation process. The officially supported platform is Scientific
Linux 6 [20] though developers have successfully built onCentOS [21], Fedora [22], andUbuntu [23]
distributions.

Each of the MICE detector systems, described in section 1.1, is represented within MAUS.
Their data structures are described in section 2.2 and their simulation and reconstruction algorithms
in sections 3 and 4. MAUS also provides “global” reconstruction routines, which combine data
from individual detector systems to identify particle species by the likelihood method and perform
a global track fit. These algorithms are also described in section 4.

2.1 Code design

MAUS is written in a mixture of Python and C++. C++ is used for complex or low-level algorithms
where processing time is important, while Python is used for simple or high-level algorithms where
development time is a more stringent requirement. Developers are allowed to write in either Python
or C++ and Python bindings to C++ are handled through internal abstractions. In practice, all the
reconstruction modules are written in C++ but support is provided for legacy modules written in
Python.

MAUS has an Application Programming Interface (API) that provides a framework on which
developers can hang individual routines. The MAUS API provides MAUS developers with a well-
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defined environment for developing reconstruction code, while allowing independent development
of the back-end and code-sharing of common elements, such as error handling.

TheMAUS data processingmodel is inspired by theMap-Reduce framework [24], which forms
the core of the API design. Map-Reduce, illustrated in figure 2 is a useful model for parallelizing
data processing on a large scale. A map process takes a single object as an input, transforms it,
and returns a new object as the output (in the case of MAUS this input object is the spill class, see
Section 2.2).

A module is the basic building block of the MAUS API framework. Four types of module exist
within MAUS:

1. Inputters generate input data either by reading data from files or over a network, or by
generating an input beam;

2. Mappers modify the input data, for example by reconstructing signals from detectors, or
tracking particles to generate MC hits;

3. Reducers collate the mapped data and provide functionality that requires access to the entire
data set; and

4. Outputters save the data either by streaming over a network or writing to disk.

Input

Input

Input

Input

Input

Map

Map

Map

Map

Map

Reduce

Reduce

Output

Output

Figure 2: A Map-Reduce framework.

Each module type follows a common, extensible, object-orientated class hierarchy, shown for the
case of the map and reduce modules in figure 3.

There are some objects that sit outside the scope of this modular framework but are nevertheless
required by several of the modules. For instance, the detector geometries, magnetic fields, and
calibrations are required by the reconstruction and simulation modules, and objects such as the
electronics-cabling maps are required in order to unpack data from the data acquisition (DAQ)
source, and error handling functionality is required by all of the modules. All these objects are
accessed through a static singleton globals class.

MAUS has two execution concepts. A job refers to a single execution of the code, while a run
refers to the processing of data for a DAQ run or MC run. A job may contain many runs. Since
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IModule
+ virtual birth(string) : void 
+ virtual death() : void 

IMap
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

ModuleBase
+ birth(string) 
+ death() : void 
- virtual birth(string) : void 
- virtual death() : void 

 public virtual

IReduce
+ process(T*) : void 
+ virtual process_pyobj(PyObject*) : PyObject* 

 public virtual

MapBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public virtual

ISpecialisedMap
 

 public virtual  public

ReduceBase
+ _process(T*) : void 
- process(T*) : void 
- process_pyobj(PyObject*) : PyObject* 

 public  public virtual

MyMap
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public

SpecialisedMapBase
 

 public

MyReduce
- _birth(string) : void 
- _death() : void 
- _process(T*) : void 

 public public virtual

Figure 3: The MAUS API class hierarchy for Map and Reduce modules. The input and output
modules follow related designs. T represents a templated argument. “+” indicates the introduction
of a virtual void method, defining an interface, while “-” indicates that a class implements that
method, fulfilling that aspect of the interface. The process_pyobj functions are the main entry
points for Python applications, and process the entry points for C++ applications. The framework
can be extended as many times as necessary, as exemplified by the “SpecialisedMap” classes.

data are typically accessed from a single source and written to a single destination, inputters and
outputters are initialized and destroyed at the beginning and end of a job. On the other hand,mappers
and reducers are initialized at the beginning of a run in order to allow run-specific information such
as electronics cabling maps, fields, calibrations and geometries to be loaded.

The principal data type in MAUS, which is passed from module to module, is the spill. A
single spill corresponds to data from the particle burst associated with a dip of the MICE target [4].
A spill lasts up to ∼ 3ms and contains several DAQ triggers. Data from a given trigger define a
single MICE event. In the language of the Input-Map-Reduce-Output framework, an Input module
creates an instance of spill data, aMapmodule processes the spill (simulating, reconstructing, etc.),
a Reduce module acts on a collection of spills when all the mappers finish, and finally an Output
module records the data to a given file format.

Modules can exchange spill data either as C++ pointers or JSON [25] objects. In Python, the
data format can be changed by using a converter module, and in C++ mappers are templated to a
MAUS data type and an API handles any necessary conversion to that type (see Fig. 3).
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Data contained within the MAUS data structure (see Section 2.2) can be saved to permanent
storage in one of two formats. The default data format is a ROOT [18] binary and the secondary
format is JSON. ROOT is a standard high-energy physics analysis package, distributed with MAUS,
through which many of the analyses on MICE are performed. Each spill is stored as a single entry
in a ROOT TTree object. JSON is an ASCII data-tree format. Specific JSON parsers are available
– for example, the Python json library, and the C++ JsonCpp [26] parser come prepackaged with
MAUS.

In addition to storing the output from the map modules, MAUS is also capable of storing the
data produced by reducer modules using a special Image class. This class is used by reducers to
store images of monitoring histograms, efficiency plots, etc. Image data may only be saved in JSON
format.

2.2 Data structure

2.2.1 Physics data

At the top of the MAUS data structure is the spill class which contains all the data from the
simulation, raw real data and the reconstructed data. The spill is passed between modules and
written to permanent storage. The data within a spill is organized into arrays of three possible
event types: an MCEvent contains data representing the simulation of a single particle traversing
the experiment and the simulated detector responses; a DAQEvent corresponds to the real data for
a single trigger; and a ReconEvent corresponds to the data reconstructed for a single particle event
(arising either from a Monte Carlo(MC) particle or a real data trigger). These different branches of
the MAUS data structure are shown diagrammatically in figures 4–9.

The sub-structure of theMC event class is shown in figure 5. The class is subdivided into events
containing detector hits (energy deposited, position, momentum) for each of the MICE detectors
(see Section 1.1). The event also contains information about the primary particle that created the
hits in the detectors.

The sub-structure of the reconstruction event class is shown in figure 6. The class is subdivided
into events representing each of the MICE detectors, together with the data from the trigger, and
data for the global event reconstruction. Each detector class and the global-reconstruction class has
several further layers of reconstruction data. This is shown in figures 7–9.
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Spill

DAQData EMRSpillData MausEventType MCEventArray ReconEventArray Scalars

Figure 4: The MAUS output structure for a spill event. The label in each box is the name of the
C++ class.

MCEventArray

MCEvent
[]

CkovHitArray KLHitArray EMRHitArray Primary SciFiHitArray SpecialVirtualHitArray TofHitArray TrackArray VirtualHitArray

CkovHit
[]

CkovChannelID

KLHit
[]

KLChannelID

EMRHit
[]

EMRChannelID

SciFiHit
[]

SciFiChannelID

SpecialVirtualHit
[]

SpecialVirtualChannelID StepArray

Step
[]

TofHit
[]

TOFChannelID

Track
[]

VirtualHit
[]

Figure 5: The MAUS data structure for MC events. The label in each box is the name of the C++
class and [] indicates that child objects are array items.
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ReconEventArray

ReconEvent
[]

CkovEvent EMREvent KLEvent SciFiEvent TOFEvent

Figure 6: The MAUS data structure for reconstructed events. The label in each box is the name of
the C++ class.

CkovEvent

CkovDigitArray

CkovDigit
[]

CkovA CkovB

EMREvent

EMRPlaneHitArray

EMRPlaneHit
[]

EMRBarArray

EMRBar
[]

EMRBarHitArray

EMRBarHit
[]

KLEvent

KLEventDigit KLEventCellHit

KLDigitArray

KLDigit
[]

KLCellHitArray

KLCellHit
[]

Figure 7: The MAUS data structure for CKOV (left), EMR (middle) and KL (right) reconstructed
events. The label in each box is the name of the C++ class [] indicates that child objects are array
items.
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Figure 8: The MAUS data structure for the tracker. The label in each box is the name of the C++
class and [] indicates that child objects are array items.
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Figure 9: The MAUS data structure for the TOFs. The label in each box is the name of the C++
class and [] indicates that child objects are array items.
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2.2.2 Top level data organization

In addition to the spill data, MAUS also contains structures for storing supplementary information
for each run and job. These are referred to as JobHeader and JobFooter, and RunHeader and
RunFooter. The JobHeader and JobFooter represent data, such as the MAUS release version,
associated with the start and end of a job, and the RunHeader and RunFooter represent data, such
as the geometry and calibrations associated with a run, associated with the start and end of a run.
These are saved to the output along with the spill.

In order to interface with ROOT, particularly in order to save data in the ROOT format, thin
wrappers for each of the top level classes, and a templated base class, were introduced. This
allows the ROOT TTree, in which the output data is stored (see Section 2.2.1), to be given a single
memory address to read from. The wrapper for Spill is called Data, while for each of RunHeader,
RunFooter, JobHeader and JobFooter, the respective wrapper class is just given the original class
name with “Data” appended, e.g., RunHeaderData. The base class for each of the wrappers is
called MAUSEvent. The class hierarchy is illustrated in Figure 10.

MAUSEvent
+ virtual GetEvent() : T*
+ virtual SetEvent(T*) : void 

Data
- virtual GetEvent() : Spill*
- virtual SetEvent(Spill*) : void 

public 
 <<bind>> 
 T -> Spill

JobHeaderData
- virtual GetEvent() : JobHeader*
- virtual SetEvent(JobHeader*) : void 

public 
 <<bind>> 

 T -> JobHeader

JobFooterData
- virtual GetEvent() : JobFooter*
- virtual SetEvent(JobFooter*) : void 

public 
 <<bind>> 

 T -> JobFooter

RunHeaderData
- virtual GetEvent() : RunHeader*
- virtual SetEvent(RunHeader*) : void 

public 
 <<bind>> 

 T -> RunHeader

RunFooterData
- virtual GetEvent() : RunFooter*
- virtual SetEvent(RunFooter*) : void 

public 
 <<bind>> 

 T -> RunFooter

Figure 10: Class hierarchy for the wrappers and base class of the top-level classes of the MAUS
data structure.

2.3 Data flow

The MAUS data-flow, showing the reconstruction chain for data originating from MC or real data,
is depicted in figure 11. Each item in the diagram is implemented as an individual module. The
data flow is grouped into three principal areas: the simulation data flow used to generate digits
(electronics signals) from particle tracking; the real data flow used to generate digits from real
detector data; and the reconstruction data flow which illustrates how digits are built into higher
level objects and converted to parameters of interest. The reconstruction data flow is the same for
digits from real data and simulation. In the case of real data, separate input modules are provided
to read either directly from the DAQ, or from archived data stored on disk. A reducer module for
each detector provides functionality to create summary histograms.

2.4 Testing

MAUS has a set of tests at the unit level and the integration level, together with code-style tests
for both Python and C++. Unit tests are implemented to test a single function, while integration
tests operate on a complete workflow. Unit tests check that each function operates as intended
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Figure 11: Data flow for the MAUS project. The data flow is color-coded by detector: Ckov -
green, EMR - purple, KL - orange, TOF - blue, Tracker - red.
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by the developer. Tests are run automatically for every version committed to the repository and
results show that a high level of code coverage has been achieved. Integration tests allow the overall
performance of the code to be checked against specifications. The MAUS team provides unit test
coverage that executes 70–80 % of the total code base. This level of coverage typically results in a
code that performs the major workflows without any problems.

TheMAUScodebase is built and tested using a Jenkins [27] continuous integration environment
deployed on a cluster of servers. Builds and tests of the development branch are automatically
triggered when there is a change to the codebase. Developers are asked to perform a build and
test on a personal branch of the codebase using the test server before requesting a merge with the
development trunk. This enables theMAUS team tomake frequent clean releases. TypicallyMAUS
works on a 4–8 week major-release cycle.

3 Monte Carlo

The Monte Carlo simulation of MICE encompasses beam generation, geometrical description of
detectors and fields, tracking of particles through detectors and digitization of the detectors’ response
to particle interactions.

3.1 Beam generation

Several options are provided to generate an incident beam. Routines are provided to sample
particles from a multivariate Gaussian distribution or generate ensembles of identical particles
(pencil beams). In addition, it is possible to produce time distributions that are either rectangular
or triangular in time to give a simplistic representation of the MICE time distribution. Parameters,
controlled by data-cards, are available to control random seed generation, relative weighting of
particle species and the transverse-to-longitudinal coupling in the beam. MAUS also allows the
generation of a polarized beam.

Beam particles can also be read in from an external file created by G4Beamline [28] – a
particle-tracking simulation program based on Geant4, or ICOOL [29] – a simulation program
that was developed to study the ionization cooling of muon beams, as well as files in user-defined
formats. In order to generate beams which are more realistic taking into account the geometry and
fields of the actual MICE beamline, we use G4Beamline to model the MICE beamline from the
target to a point upstream of the second quad triplet (upstream of Q4). The beamline settings, e.g.,
magnetic field strengths and number of particles to generate, are controlled through data-cards. The
magnetic field strengths have been tuned to produce beams that are reasonably accurate descriptions
of the real beam. Scripts to install G4beamline are shipped with MAUS.

Once the beam is generated, the tracking and interactions of particles as they traverse the rest
of the beamline and the MICE detectors are performed using Geant4.

3.2 Geant4

A drawing of the MICE Muon Beam line [4] is shown in figure 12. It consists of a quadrupole
triplet (Q123) that captures pions produced when theMICE target intersects the ISIS proton beam, a
pion-momentum-selection dipole (D1), a superconducting solenoid (DS) to focus and transport the
particles to a second dipole (D2) that is used to select the muon-beam momentum, and a transport
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channel composed of a further two quadrupole triplets (Q456 and Q789). As described in the next
section, the positions and apertures of the beamline magnets were surveyed and are reproduced
in the geometry along with windows and materials in the path of the muon beams. The Geant4
simulation within MAUS starts 1m downstream of the second beamline dipole magnet D2. Geant4
bindings are encoded in the Simulation module. Geant4 groups particles by run, event and track.
A Geant4 run maps to a MICE spill; a Geant4 event maps to a single inbound particle from the
beamline; and a Geant4 track corresponds to a single particle in the experiment.

Figure 12: (a) Top and (b) side views of the MICE Muon Beamline, its instrumentation, and the
experimental configuration. A titanium target dipped into the ISIS proton synchrotron and the
resultant spill of particles was captured with a quadrupole triplet (Q1–3) and transported through
momentum-selecting dipoles (D1, D2). The quadrupole triplets (Q4–6, Q7–9) transported particles
to the upstream spectrometer module. The time-of-flight of particles, measured between TOF0 and
TOF1, was used for particle identification.

Geant4 provides a variety of reference physics processes to model the interactions of particles
with matter. The default process inMAUS is “QGSP_BERT” which causes Geant4 to model hadron
interactions using a Bertini cascade model up to 10 GeV/c [30]. MAUS provides methods to set up
the Geant4 physical processes through user-controlled data-cards. Finally, MAUS provides routines
to extract particle data from the Geant4 tracks at user-defined locations.

3.3 Geometry

MAUS uses an online Configuration Database to store all of its geometries. These geometries
have been extracted from CAD drawings which are updated based on the most recent surveys and
technical drawings available. The CAD drawings are translated to a geometry-specific subset of
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XML, the Geometry Description Markup Language (GDML) [31] prior to being recorded in the
configuration database through the use of the FastRAD [32] commercial software package.

The GDML formatted description contains the beamline elements and the positions of the
detector survey points. Beam-line elements are described using tessellated solids to define the
shapes of the physical volumes. The detectors themselves are described using an independently
generated set of GDMLfiles using Geant4 standard volumes. An additional XMLfile is appended to
the geometry description that assigns magnetic fields and associates the detectors to their locations
in the GDML files. This file is initially written by the geometry maintainers and formatted to
contain run-specific information during download.

The GDML files can be read via a number of libraries in Geant4 and ROOT for the purpose
of independent validation. The files are in turn translated into the MAUS-readable geometry files
either by accessing directly the data using a python extension or through the use of EXtensible
Stylesheet Language Transformations (XSLT) [33].

3.4 Tracking, field maps and beam optics

MAUS tracking is performed using Geant4. By default, MAUS uses 4th order Runge-Kutta (RK4)
for tracking, although other routines are available. RK4 has been shown to have very good precision
relative to the MICE detector resolutions, even for step sizes of several cm.

In a solenoid focussing lattice a cylindrically symmetric beam can be described by the 4D RMS
beam emittance εN and optical parameters β⊥ and β′⊥, its derivative with respect to z. β⊥ is related
to the variance of the position of particles x by [34]:

β⊥ =
pzVar(x)
εNmc

; (3.1)

where m is the particle mass, c is the speed of light, and pz is the beam longitudinal momentum.
In the approximation that particles travel near to the solenoid axis, transport of the beam envelope
can be performed by integration of the differential equation:

2β⊥β′′⊥ − (β′⊥)2 + 4β2
⊥κ

2 − 4(1 + L)2 = 0. (3.2)

Transport of individual particles can be performed using numerical integration of the Lorentz force
law. Alternately transport can be performed by calculating a transfer map M defined by:

®uds =M®uus; (3.3)

where ®uus and ®uds are the upstream and downstream transverse phase space vectors ®u = (x, px, y, py).
MAUS can calculate the transfer map at arbitrary order by transporting a handful of particles and
fitting to a multidimensional polynomial in ®u.

Electromagnetic field maps are implemented in a series of overlapping regions. The world
volume is divided into a number of voxels, and the field maps that impinge on each voxel is stored
in a list. At each tracking step, MAUS iterates over the list of fields that impinge on the voxels
within which the particle is stepping. For each field map, MAUS transforms to the local coordinate
system of the field map, and calculates the field. The field values are transformed back into the
global coordinate system, summed, and passed to Geant4. The voxelization enables the simulation
of long accelerators without a performance penalty.
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Numerous field types have been implemented within the MAUS framework. Solenoid fields
can be calculated numerically from cylindrically symmetric 2D field maps, by taking derivatives
of an on-axis solenoidal field or by using the sum of fields from a set of cylindrical current sheets.
The use of field maps enables the realistic reproduction of the MICE apparatus, while a derivatives-
based approach enables the exclusion of different terms in the higher order parts of the transfer
map [35]. Multipole fields can be calculated from a 3D field map, or by taking derivatives from
the usual multipole expansion formulae. Linear, quadratic and cubic interpolation routines have
been implemented for field maps. Pillbox fields can be calculated by using the Bessel functions
appropriate for a TM010 cavity or by reading a cylindrically symmetric field map.

The transport algorithms have been compared with each other and experimental data and show
agreement at linear order [36] in ®u. Work is ongoing to study the effect of aberrations in the
optics, indicated by non-linear terms in the transfer map relationship. These aberrations can cause
distortion of the beam leading to emittance growth, which has been observed in the tails of the
MICE beam. The tracking in MAUS has been benchmarked against ICOOL, G4Beamline, and
MaryLie [37], demonstrating good agreement. The routines have been used to model a number of
beamlines and rings, including a neutrino factory front-end [38].

3.5 Detector response and digitization

The modeling of the detector response and electronics enables MAUS to provide data used to test
reconstruction algorithms and estimate the uncertainties introduced by detectors and their readout.

The interaction of particles inmaterials ismodeled usingGeant4. For each detector, a “sensitive
detector” class processes Geant4 hits in active detector volumes and stores hit information such as
the volume that was hit, the energy deposited and the time of the hit. Each detector’s digitization
routine then simulates the response of the electronics to these hits, modeling processes such as the
photo-electron yield from a scintillator bar, attenuation in light guides and the pulse shape in the
electronics. The data structure of the outputs from the digitizers are designed to match the output
from the unpacking of real data from the DAQ.

4 Reconstruction

The reconstruction chain takes as its input either digitized hits from the MC or DAQ digits from
real data. Regardless, the detector reconstruction algorithms, by requirement and design, operate
the same way on both MC and real data.

4.1 Time of flight

There are three time-of-flight detectors in MICE which serve to distinguish particle type. The
detectors are made of plastic scintillator and in each station there are orthogonal x and y planes
with 7 or 10 slabs in each plane.

Each Geant4 hit in the TOF is associated with a physical scintillator slab. The energy deposited
by a hit is first converted to units of photo-electrons. The photo-electron yield from a hit accounts
for the light attenuation corresponding to the distance of the hit from the photomultiplier tube
(PMT) and is then smeared by the photo-electron resolution. The yields from all hits in a given
slab are then summed and the resultant yield is converted to ADC counts.
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The time of the hit in the slab is propagated to the PMTs at either end of the slab. The propagated
time is then smeared by the PMT’s time resolution and converted to TDC counts. Calibration
corrections based on real data are then added to the TDC values so that, at the reconstruction stage,
they can be corrected just as is done with real data.

The reconstruction proceeds in two main steps. First, the slab-hit-reconstruction takes indi-
vidual PMT digits and associates them to reconstruct the hit in the slab. If there are multiple hits
associated with a PMT, the hit which is earliest in time is taken to be the real hit. Then, if both
PMTs on a slab have fired, the slab is considered to have a valid hit. The TDC values are converted
to time and the hit time and charge associated with the slab hit are taken to be the average of the two
PMT times and charges respectively. In addition, the product of the PMT charges is also calculated
and stored. Secondly, individual slab hits are used to form space-points. A space-point in the TOF
is a combination of x and y slab hits. All combinations of x and y slab hits in a given station are
treated as space-point candidates. Calibration corrections, stored in the Configurations Database,
are applied to these hit times and if the reconstructed space-point is consistent with the resolution of
the detector, the combination is said to be a valid space-point. The TOF has been shown to provide
good time resolutions at the 60 ps level [6].
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Figure 13: Relative time of flight between TOF0 and TOF1. The yellow histogram represents true
MC events and the solid markers represent the same sample reconstructed with MAUS.

4.2 Scintillating-fiber trackers

The scintillating-fiber trackers are the central piece of the reconstruction. As mentioned in Sec-
tion 1.1, there are two trackers, one upsteam and the other downstream of an absorber, situated
within solenoidal magnetic fields. The trackers measure the emittance before and after particles
pass through the absorber.

The tracker software algorithms and performance are described in detail in [39]. Digits are the
most basic unit fed into the main reconstruction module, each digit representing a signal from one
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Figure 14: Position and momentum distributions of muons reconstructed at upstream tracker
station nearest to the absorber: a) x, b) y, c) px , d) py . The yellow histograms represent true MC
simulations, and the markers represent the MC sample reconstructed using MAUS.

channel. Digits from adjacent channels are assumed to come from the same particle and are grouped
to form clusters. Clusters from channels which intersect each other, in at least two planes from the
same station, are used to form space-points, giving x and y positions where a particle intersected
a station. Once space-points have been found, they are associated with individual tracks through
pattern recognition (PR), giving straight or helical PR tracks. These tracks, and the space-points
associated with them, are then sent to the final track fit. To avoid biases that may come from
space-point reconstruction, the Kalman filter uses only reconstructed clusters as input.

4.3 KL calorimeter

Hit-level reconstruction of the KL is implemented in MAUS. Individual PMT hits are unpacked
from the DAQ or simulated from MC and the reconstruction associates them to identify the slabs
that were hit and calculates the charge and charge-product corresponding to each slab hit. The KL
has been used successfully to estimate the pion contamination in the MICE muon beamline [9].
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4.4 Electron-muon ranger

Hit-level reconstruction of the EMR is implemented in MAUS. The integrated ADC count and time
over threshold are calculated for each bar that was hit. The EMR reconstructs a wide range of
variables that can be used for particle identification and momentum reconstruction. The software
and performance of the EMR are described in detail in [10].

4.5 Cherenkov

The CKOV reconstruction takes the raw flash-ADC data, subtracts pedestals, calculates the charge
and applies calibrations to determine the photo-electron yield.

4.6 Global reconstruction

The aim of the Global Reconstruction is to take the reconstructed outputs from individual detectors
and tie them together to form a global track. A likelihood for each particle hypothesis is also
calculated.

4.6.1 Global track matching

Global track matching is performed by collating particle hits (TOFs 0, 1 and 2, KL, Ckovs) and
tracks (Trackers and EMR) from each detector using their individual reconstruction and combining
them using a RK4 method to propagate particles between these detectors.The tracking is performed
outwards from the cooling channel – i.e., from the upstream tracker to the TOF0 detector, and from
the downstream tracker to the EMR detector. Track points are matched to form tracks using an
RK4 method. Initially this is done independently for the upstream and downstream sections (i.e.,
either side of the absorber). As the trackers provide the most accurate position reconstruction, they
are used as starting points for track matching, propagating hits outwards into the other detectors
and then comparing the propagated position to the measured hit in the detector. The acceptance
criterion for a hit belonging to a track is an agreement within the detector’s resolution with an
additional allowance for multiple scattering. Track matching is currently performed for all TOFs,
KL and EMR.

The RK4 propagation requires the mass and charge of the particle to be known. Hence, it is
necessary to perform track matching using a hypothesis for each particle type (muons, pions, and
electrons). Tracks for all possible PID hypotheses are then passed to the Global PID algorithms.

4.6.2 Global PID

Global particle identification in MICE typically requires the combination of several detectors. The
time-of-flight between TOF detectors can be used to calculate velocity, which is compared with the
momentum measured in the trackers to identify the particle type. For all events but those with very
low transverse momentum (pt ), charge can be determined from the direction of helical motion in
the trackers. Additional information can be obtained from the CKOV, KL and EMR detectors. The
global particle identification framework is designed to tie this disparate information into a set of
hypotheses of particle types, with an estimate of the likelihood of each hypothesis.

The Global PID in MAUS uses a log-likelihood method to identify the particle species of a
global track. It is based upon a framework of PID variables. Simulated tracks are used to produce
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probability density functions (PDFs) of the PID variables. These are then compared with the PID
variables for tracks in real data to obtain a set of likelihoods for the PIDs of the track.

The input to the Global PID is several potential tracks from global track matching. During
the track matching stage, each of these tracks was matched for a specific particle hypothesis. The
Global PID then takes each track and determines the most likely PID following a series of steps:

1. Each track is copied into an intermediate track;

2. For each potential PID hypothesis p, the log-likelihood is calculated using the PID variables;

3. The track is assigned an object containing the log-likelihood for each hypothesis; and

4. From the log-likelhoods, the confidence level, C.L., for a track having a PID p is calculated
and the PID is set to the hypothesis with the best C.L.

4.7 Online reconstruction

During data taking, it is essential to visualize a detector’s performance and have diagnostic tools
to identify and debug unexpected behavior. This is accomplished through summary histograms
of high and low-level quantities from detectors. The implementation is through a custom multi-
threaded application based on a producer–consumer pattern with thread-safe FIFO buffers. Raw
data produced by the DAQ are streamed through a network and consumed by individual detector
mappers described in Section 3. The reconstructed outputs produced by the mappers, are in turn
consumed by the reducers. The mappers and reducers are distributed among the threads to balance
the load. Finally, outputs from the reducers are written as histogram images. Though the framework
for the online reconstruction is based on parallelized processing of spills, the reconstructionmodules
are the same as those used for offline processing. A lightweight tool based on Django [40] provides
live web-based visualization of the histogram images as and when they are created. Typical data
rates during experimental operations were∼ 300MB/s. The average event rate varied, depending on
the configuration of the beamline, with the maximum instantaneous rate being ∼ 150 kHz. MAUS
performance matched the data rates and online reconstruction happened virtually “live” with the
reconstructed outputs available instantly allowing collaborators to monitor the quality of the data
being acquired.

5 Summary

The MICE collaboration has developed the MAUS software suite to simulate the muon beamline,
simulate the MICE detectors, and reconstruct both simulated and real data. The software also
provides global track-matching and particle-identification capabilities. Simplified programming
interfaces and testing environments enable productive development. MAUS has been successfully
used to reconstruct data online during data collection. In addition, MAUS is routinely used to
perform reconstruction of the entire MICE data volume on batch production systems. MICE has
collected ∼ 15 TB of raw data and a full reconstruction of the data is performed with each released
version of MAUS. The batch systems are also used to perform compute-intensive simulations with
various configurations of the beamline and the cooling channel.
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